How to handle tool errors
This guide assumes familiarity with the following concepts:
Calling tools with an LLM is generally more reliable than pure prompting, but it isn't perfect. The model may try to call a tool that doesn't exist or fail to return arguments that match the requested schema. Strategies like keeping schemas simple, reducing the number of tools you pass at once, and having good names and descriptions can help mitigate this risk, but aren't foolproof.
This guide covers some ways to build error handling into your chains to mitigate these failure modes.
Setupβ
We'll need to install the following packages:
%pip install --upgrade --quiet langchain-core langchain-openai
If you'd like to trace your runs in LangSmith uncomment and set the following environment variables:
import getpass
import os
# os.environ["LANGCHAIN_TRACING_V2"] = "true"
# os.environ["LANGCHAIN_API_KEY"] = getpass.getpass()
Chainβ
Suppose we have the following (dummy) tool and tool-calling chain. We'll make our tool intentionally convoluted to try and trip up the model.
- OpenAI
- Anthropic
- Azure
- AWS
- Cohere
- NVIDIA
- FireworksAI
- Groq
- MistralAI
- TogetherAI
- Databricks
pip install -qU langchain-openai
import getpass
import os
os.environ["OPENAI_API_KEY"] = getpass.getpass()
from langchain_openai import ChatOpenAI
llm = ChatOpenAI(model="gpt-4o-mini")
pip install -qU langchain-anthropic
import getpass
import os
os.environ["ANTHROPIC_API_KEY"] = getpass.getpass()
from langchain_anthropic import ChatAnthropic
llm = ChatAnthropic(model="claude-3-5-sonnet-20240620")
pip install -qU langchain-openai
import getpass
import os
os.environ["AZURE_OPENAI_API_KEY"] = getpass.getpass()
from langchain_openai import AzureChatOpenAI
llm = AzureChatOpenAI(
azure_endpoint=os.environ["AZURE_OPENAI_ENDPOINT"],
azure_deployment=os.environ["AZURE_OPENAI_DEPLOYMENT_NAME"],
openai_api_version=os.environ["AZURE_OPENAI_API_VERSION"],
)
pip install -qU langchain-google-vertexai
# Ensure your VertexAI credentials are configured
from langchain_google_vertexai import ChatVertexAI
llm = ChatVertexAI(model="gemini-1.5-flash")
pip install -qU langchain-aws
# Ensure your AWS credentials are configured
from langchain_aws import ChatBedrock
llm = ChatBedrock(model="anthropic.claude-3-5-sonnet-20240620-v1:0",
beta_use_converse_api=True)
pip install -qU langchain-cohere
import getpass
import os
os.environ["COHERE_API_KEY"] = getpass.getpass()
from langchain_cohere import ChatCohere
llm = ChatCohere(model="command-r-plus")
pip install -qU langchain-nvidia-ai-endpoints
import getpass
import os
os.environ["NVIDIA_API_KEY"] = getpass.getpass()
from langchain_nvidia_ai_endpoints import ChatNVIDIA
llm = ChatNVIDIA(model="meta/llama3-70b-instruct")
pip install -qU langchain-fireworks
import getpass
import os
os.environ["FIREWORKS_API_KEY"] = getpass.getpass()
from langchain_fireworks import ChatFireworks
llm = ChatFireworks(model="accounts/fireworks/models/llama-v3p1-70b-instruct")
pip install -qU langchain-groq
import getpass
import os
os.environ["GROQ_API_KEY"] = getpass.getpass()
from langchain_groq import ChatGroq
llm = ChatGroq(model="llama3-8b-8192")
pip install -qU langchain-mistralai
import getpass
import os
os.environ["MISTRAL_API_KEY"] = getpass.getpass()
from langchain_mistralai import ChatMistralAI
llm = ChatMistralAI(model="mistral-large-latest")
pip install -qU langchain-openai
import getpass
import os
os.environ["TOGETHER_API_KEY"] = getpass.getpass()
from langchain_openai import ChatOpenAI
llm = ChatOpenAI(
base_url="https://api.together.xyz/v1",
api_key=os.environ["TOGETHER_API_KEY"],
model="mistralai/Mixtral-8x7B-Instruct-v0.1",
)
pip install -qU databricks-langchain
import getpass
import os
os.environ["DATABRICKS_TOKEN"] = getpass.getpass()
from databricks_langchain import ChatDatabricks
$os.environ["DATABRICKS_HOST"] = "https://example.staging.cloud.databricks.com/serving-endpoints"
{llmVarName} = ChatDatabricks(endpoint="databricks-meta-llama-3-1-70b-instruct")
# Define tool
from langchain_core.tools import tool
@tool
def complex_tool(int_arg: int, float_arg: float, dict_arg: dict) -> int:
"""Do something complex with a complex tool."""
return int_arg * float_arg
llm_with_tools = llm.bind_tools(
[complex_tool],
)
# Define chain
chain = llm_with_tools | (lambda msg: msg.tool_calls[0]["args"]) | complex_tool
We can see that when we try to invoke this chain with even a fairly explicit input, the model fails to correctly call the tool (it forgets the dict_arg
argument).
chain.invoke(
"use complex tool. the args are 5, 2.1, empty dictionary. don't forget dict_arg"
)
---------------------------------------------------------------------------
``````output
ValidationError Traceback (most recent call last)
``````output
Cell In[5], line 1
----> 1 chain.invoke(
2 "use complex tool. the args are 5, 2.1, empty dictionary. don't forget dict_arg"
3 )
``````output
File ~/langchain/.venv/lib/python3.11/site-packages/langchain_core/runnables/base.py:2998, in RunnableSequence.invoke(self, input, config, **kwargs)
2996 input = context.run(step.invoke, input, config, **kwargs)
2997 else:
-> 2998 input = context.run(step.invoke, input, config)
2999 # finish the root run
3000 except BaseException as e:
``````output
File ~/langchain/.venv/lib/python3.11/site-packages/langchain_core/tools/base.py:456, in BaseTool.invoke(self, input, config, **kwargs)
449 def invoke(
450 self,
451 input: Union[str, Dict, ToolCall],
452 config: Optional[RunnableConfig] = None,
453 **kwargs: Any,
454 ) -> Any:
455 tool_input, kwargs = _prep_run_args(input, config, **kwargs)
--> 456 return self.run(tool_input, **kwargs)
``````output
File ~/langchain/.venv/lib/python3.11/site-packages/langchain_core/tools/base.py:659, in BaseTool.run(self, tool_input, verbose, start_color, color, callbacks, tags, metadata, run_name, run_id, config, tool_call_id, **kwargs)
657 if error_to_raise:
658 run_manager.on_tool_error(error_to_raise)
--> 659 raise error_to_raise
660 output = _format_output(content, artifact, tool_call_id, self.name, status)
661 run_manager.on_tool_end(output, color=color, name=self.name, **kwargs)
``````output
File ~/langchain/.venv/lib/python3.11/site-packages/langchain_core/tools/base.py:622, in BaseTool.run(self, tool_input, verbose, start_color, color, callbacks, tags, metadata, run_name, run_id, config, tool_call_id, **kwargs)
620 context = copy_context()
621 context.run(_set_config_context, child_config)
--> 622 tool_args, tool_kwargs = self._to_args_and_kwargs(tool_input)
623 if signature(self._run).parameters.get("run_manager"):
624 tool_kwargs["run_manager"] = run_manager
``````output
File ~/langchain/.venv/lib/python3.11/site-packages/langchain_core/tools/base.py:545, in BaseTool._to_args_and_kwargs(self, tool_input)
544 def _to_args_and_kwargs(self, tool_input: Union[str, Dict]) -> Tuple[Tuple, Dict]:
--> 545 tool_input = self._parse_input(tool_input)
546 # For backwards compatibility, if run_input is a string,
547 # pass as a positional argument.
548 if isinstance(tool_input, str):
``````output
File ~/langchain/.venv/lib/python3.11/site-packages/langchain_core/tools/base.py:487, in BaseTool._parse_input(self, tool_input)
485 if input_args is not None:
486 if issubclass(input_args, BaseModel):
--> 487 result = input_args.model_validate(tool_input)
488 result_dict = result.model_dump()
489 elif issubclass(input_args, BaseModelV1):
``````output
File ~/langchain/.venv/lib/python3.11/site-packages/pydantic/main.py:568, in BaseModel.model_validate(cls, obj, strict, from_attributes, context)
566 # `__tracebackhide__` tells pytest and some other tools to omit this function from tracebacks
567 __tracebackhide__ = True
--> 568 return cls.__pydantic_validator__.validate_python(
569 obj, strict=strict, from_attributes=from_attributes, context=context
570 )
``````output
ValidationError: 1 validation error for complex_toolSchema
dict_arg
Field required [type=missing, input_value={'int_arg': 5, 'float_arg': 2.1}, input_type=dict]
For further information visit https://errors.pydantic.dev/2.8/v/missing
Try/except tool callβ
The simplest way to more gracefully handle errors is to try/except the tool-calling step and return a helpful message on errors:
from typing import Any
from langchain_core.runnables import Runnable, RunnableConfig
def try_except_tool(tool_args: dict, config: RunnableConfig) -> Runnable:
try:
complex_tool.invoke(tool_args, config=config)
except Exception as e:
return f"Calling tool with arguments:\n\n{tool_args}\n\nraised the following error:\n\n{type(e)}: {e}"
chain = llm_with_tools | (lambda msg: msg.tool_calls[0]["args"]) | try_except_tool
print(
chain.invoke(
"use complex tool. the args are 5, 2.1, empty dictionary. don't forget dict_arg"
)
)
Calling tool with arguments:
{'int_arg': 5, 'float_arg': 2.1}
raised the following error:
<class 'pydantic_core._pydantic_core.ValidationError'>: 1 validation error for complex_toolSchema
dict_arg
Field required [type=missing, input_value={'int_arg': 5, 'float_arg': 2.1}, input_type=dict]
For further information visit https://errors.pydantic.dev/2.8/v/missing
Fallbacksβ
We can also try to fallback to a better model in the event of a tool invocation error. In this case we'll fall back to an identical chain that uses gpt-4-1106-preview
instead of gpt-3.5-turbo
.
chain = llm_with_tools | (lambda msg: msg.tool_calls[0]["args"]) | complex_tool
better_model = ChatOpenAI(model="gpt-4-1106-preview", temperature=0).bind_tools(
[complex_tool], tool_choice="complex_tool"
)
better_chain = better_model | (lambda msg: msg.tool_calls[0]["args"]) | complex_tool
chain_with_fallback = chain.with_fallbacks([better_chain])
chain_with_fallback.invoke(
"use complex tool. the args are 5, 2.1, empty dictionary. don't forget dict_arg"
)
10.5
Looking at the LangSmith trace for this chain run, we can see that the first chain call fails as expected and it's the fallback that succeeds.
Retry with exceptionβ
To take things one step further, we can try to automatically re-run the chain with the exception passed in, so that the model may be able to correct its behavior:
from langchain_core.messages import AIMessage, HumanMessage, ToolCall, ToolMessage
from langchain_core.prompts import ChatPromptTemplate
class CustomToolException(Exception):
"""Custom LangChain tool exception."""
def __init__(self, tool_call: ToolCall, exception: Exception) -> None:
super().__init__()
self.tool_call = tool_call
self.exception = exception
def tool_custom_exception(msg: AIMessage, config: RunnableConfig) -> Runnable:
try:
return complex_tool.invoke(msg.tool_calls[0]["args"], config=config)
except Exception as e:
raise CustomToolException(msg.tool_calls[0], e)
def exception_to_messages(inputs: dict) -> dict:
exception = inputs.pop("exception")
# Add historical messages to the original input, so the model knows that it made a mistake with the last tool call.
messages = [
AIMessage(content="", tool_calls=[exception.tool_call]),
ToolMessage(
tool_call_id=exception.tool_call["id"], content=str(exception.exception)
),
HumanMessage(
content="The last tool call raised an exception. Try calling the tool again with corrected arguments. Do not repeat mistakes."
),
]
inputs["last_output"] = messages
return inputs
# We add a last_output MessagesPlaceholder to our prompt which if not passed in doesn't
# affect the prompt at all, but gives us the option to insert an arbitrary list of Messages
# into the prompt if needed. We'll use this on retries to insert the error message.
prompt = ChatPromptTemplate.from_messages(
[("human", "{input}"), ("placeholder", "{last_output}")]
)
chain = prompt | llm_with_tools | tool_custom_exception
# If the initial chain call fails, we rerun it withe the exception passed in as a message.
self_correcting_chain = chain.with_fallbacks(
[exception_to_messages | chain], exception_key="exception"
)
self_correcting_chain.invoke(
{
"input": "use complex tool. the args are 5, 2.1, empty dictionary. don't forget dict_arg"
}
)
10.5
And our chain succeeds! Looking at the LangSmith trace, we can see that indeed our initial chain still fails, and it's only on retrying that the chain succeeds.
Next stepsβ
Now you've seen some strategies how to handle tool calling errors. Next, you can learn more about how to use tools:
- Few shot prompting with tools
- Stream tool calls
- Pass runtime values to tools
You can also check out some more specific uses of tool calling:
- Getting structured outputs from models